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Correlation of eigenstates in the critical regime of quantum
Hall systems
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Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany

Received 8 May 1996

Abstract. We extend the multifractal analysis of the statistics of critical wave functions
in quantum Hall systems by calculating numerically the correlations of local amplitudes
corresponding to eigenstates at two different energies. Our results confirm multifractal scaling
relations which are different from those occurring in conventional critical phenomena. The
critical exponent corresponding to the typical amplitude,α0 ≈ 2.28, gives an almost complete
characterization of the critical behaviour of eigenstates, including correlations. Our results
support the interpretation of the local density of states being an order parameter of the Anderson
transition.

1. Introduction

Two-dimensional independent electrons in the presence of static disorder and a strong
magnetic field undergo disorder induced localization–delocalization (LD) transitions when
the Fermi energy crosses critical energies—the Landau energies. These LD transitions are
believed to be responsible for the integer quantum Hall effect [1, 2]. In finite-size systems
the localization lengthξ of the electronic states is larger than the system sizeL for a certain
energy range,1E, around the critical energies. These states are calledcritical states. In
the thermodynamic limit1E ∝ L−1/ν whereν is the critical exponent ofξ . An obvious
task for a theory of the LD transition is to yield the statistics and scaling behaviour of
eigenstates in the critical regime. After pioneering works by Wegner [3] and Aoki [4] it
became clear that the critical wave functions have a multifractal structure (for a review
see [5] and references therein). The entire distribution of local amplitudes and its scaling
behaviour is encoded in the multifractalf (α) spectrum. The distribution is broad on all
length scales and close to a log-normal distribution. The most important quantity is the
maximum position,α0, of f (α). It describes the scaling behaviour of the geometric mean
of what serves as atypical amplitude of a critical wave function. Thef (α) spectrum has
been interpreted as a spectrum of critical exponents related to the order parameter field
of the LD transition [5]. To be consistent with such an interpretationf (α) has to share
several features with scaling exponents in conventional critical phenomena. Firstly, it has
to be universal, i.e. independent of the disorder configuration and the microscopic details
of the electron state. In previous studies this was confirmed [6]. Secondly, correlations of
the order parameter field have to be related tof (α) by appropriate scaling relations. A
systematic investigation of this topic is presented here (related conformal scaling relations
were recently investigated by Dohmenet al [7]). Our numerical data are consistent with
universal scaling relations betweenf (α) and scaling exponents of the energetic and spatial
correlations of critical wave functions.
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The article is organized as follows. In section 2 we explicitly demonstrate that the
multifractal spectrum describes the distribution function of local amplitudes. In section 3
the spatial correlations of local amplitudes (and powers thereof) of wave functions at a
fixed energy in the critical regime are investigated. We study the scaling with respect
to the size of boxes which the local amplitude is averaged over, and with respect to the
distance between correlated amplitudes. We find that scaling relations are fulfilled which
can also be obtained by heuristic arguments. In section 4 we study the correlator of two
local amplitudes corresponding to critical eigenstates at energies separated byω. We find
that a characteristic length scaleLω (introduced by Chalker [8, 9]) serves as a cutoff length
for multifractal correlations. Remarkably, two local amplitudes corresponding to eigenstates
separated in energy byω are correlated in the same way as two amplitudes corresponding
to one eigenstate, provided their spatial distance is less thanLω. By transforming from the
wave function amplitudes to the local density of states our results show that the local density
of states has several features in common with order parameter fields. The conclusions are
summarized in section 5.

2. Distribution of local amplitudes

In this section we first review the multifractal analysis of the distribution of local amplitudes
of critical eigenstates. Secondly, we confirm that the distribution is encoded in the
multifractalf (α) spectrum by a direct comparison of the numerically obtained histogram of
local amplitudes with the theoretical distribution function that follows from the numerically
obtainedf (α) spectrum.

In 1983 Aoki [4] gave a nice argument for the multifractal behaviour of critical wave
functions (although at that time the phrase ‘multifractality’ was not yet common). His
argument goes as follows. Consider the inverse participation number defined by

P =
∫

�

dd r |ψ(r)|4 (1)

where� denotes ad-dimensional region with linear sizeL. If the wave functionψ(r)

is uniformly distributed—as in a metallic phase—thenP ∝ L−d and the participation
ratio p = (PLd)−1 is constant. In the localized regimeP ≈ ξ−d and p vanishes in the
thermodynamic limit. At the transition point where the wave function is extended the
participation ratio still has to vanish in the thermodynamic limit if the LD phenomenon is
similar to a second-order phase transition. Consequently,P scales with a powerd∗ < d.
Wegner had already calculated the whole spectrum of exponents for generalized inverse
participation numbers within the non-linear sigma model [3]. This spectrum was interpreted
as a multifractal spectrum by Castellani and Peliti [10]. After extensive numerical work the
following description of the statistics of critical wave functionsψ(r) is now established.

Consider the box probability

P(Lb) :=
∫

box
|ψ(r)|2 (2)

of some box with linear sizeLb, normalized to the total volumeLd , P(L) = 1. At the
LD transition the corresponding distribution functionπ(P ; Lb/L) gives rise to power law
scaling for the moments,

〈[P(Lb)]
q〉L ∝ (Lb/L)d+τ(q) (3)

whered + τ(q) is a non-linear function ofq. This non-linearity is a direct consequence
of Aoki’s observation thatd + τ(2) = d + d∗ 6= d + d. The brackets〈. . .〉L in (3)
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denote the average over disorder configurations. In practice it turns out that, to a good
accuracy, this average can often be substituted by the spatial average over one wave
function for a given configuration. Within numerical accuracy the resulting spectra are
identical. This ‘universality’ is expected to be precise in the thermodynamic limit (see also
[11]).

The corresponding (universal) distribution function can be described in terms of
a single-humped, positive functionf (α) called the multifractal spectrum of the wave
function,

π(P ; Lb/L) dP ∝ (Lb/L)d−f (α) dα (4)

where α := ln P/ ln(Lb/L); f (α) is related to τ(q) by a Legendre transforma-
tion

f (α(q)) = α(q)q − τ(q) α(q) = dτ(q)/dq. (5)

Thus, the statistics of critical eigenstates is encoded inf (α) or equivalently in
τ(q). Because of the horse-shoe shape off (α) it can be approximated by a
parabola,

f (α) ≈ d − (α − α0)
2/(4(α0 − d)). (6)

This parabolic approximation (PA) containsα0 as the only parameter besidesd.
This is due to the assumed validity of the PA at least up to|q| 6 1.
Equation (6) corresponds to a log-normal distribution centred around the typical
value Ptyp := exp〈ln P 〉 ∝ (Lb/L)α0 with log variance proportional toα0 −
d. A simple one-parameter approximation forf (α), which takes into account that
the support [α(∞), α(−∞)] of f (α) is finite, is the semi-elliptic approximation
(SEA)

f (α) ≈ d

√
1 − (α − α0)2

α2
0 − d2

. (7)

To demonstrate that the distribution of local amplitudes of critical eigenstates
is encoded in f (α) we present numerical results for a quantum Hall system
(QHS).

The wave functions are calculated for the model of independent (spinless) electrons
subject to strong magnetic field and disorder. The disorder was implemented by a set of
δ-impurities with random positions and random strengths symmetric around zero. To avoid
some of the (degenerate) wave functions of the pure system having zeros precisely at the
position of the point scatterers (and thus not being affected by disorder) the number of point
scatterers was taken to be larger then the number of flux quanta penetrating the system’s area
L2 [12]. The microscopic length scale of the problem is the magnetic lengthlB defined by
the size of a cell penetrated by a single flux quantum, 2πl2

B . We worked out the representing
Hamiltonian matrix in the Landau representation which is convenient for periodic boundary
conditions in one direction (say they-direction). To account for a finite system size in
the x-direction we adopted the Landau counting procedure which results in a matrix of
dimensionN = L2/(2πl2

B), after projecting to the lowest Landau band. The matrix has
band structure with a bandwidth of order

√
N and allows for diagonalizing systems of

linear sizeL about 200lB with the aid of usual workstations. The diagonalization yields the
eigenvalues and eigenstates for any desired energy window within the lowest Landau band.
The determination of the range1E of critical states was based on a previous analysis of
Thouless numbers within the same model [13].
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Figure 1. Squared amplitudes of a critical wave function for a system of linear size 200 magnetic
lengths. The correspondingf (α) spectrum (•) together with the parabolic approximation
(· · · · · ·) (PA, equation (6)) and the semi-elliptic approximation (——) (SEA, equation (7)) are
also shown.

In figure 1 the squared amplitudes of a wave function from the centre of the Landau
band are shown together with thef (α) spectrum calculated from these amplitudes. The
corresponding histogram of the logarithm of amplitudes (measured on a box of size 4l2

B)
is displayed in figure 2 together with the distribution function calculated from thef (α)

spectrum using (4). These figures demonstrate that the distribution of amplitudes (i) is
encoded in thef (α) spectrum and (ii) is close to a log-normal distribution characterized
by one critical exponentα0 = 2.28 ± 0.03 (the average over 130 critical states). Similar
findings have been presented already in section 12.2 of [2].

3. Correlations at fixed energy

In this section we first outline a theoretical description of scaling relations between the
critical exponents of the correlations at a fixed energy and thef (α) spectrum. We follow
mainly the presentation of [5]. Also, we present our numerical data which confirm the
scaling relations.

To study the spatial correlations of amplitudes for a fixed energy we consider theq-
dependent correlations

M [q](r, Lb, L) := 〈[Pi(Lb)]
q [Pi+s(Lb)]

q〉L (8)

where the average is to be taken over all pairs of boxes with fixed distancer = sLb.
For critical states where the microscopic scale (lB in our case) and the macroscopic scale

(the localization lengthξ in our case) are separated, one can expect power law behaviour
of M [q] in the regime

lB � Lb, r, L � ξ. (9)
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Figure 2. Histogram of the logarithm of squared amplitudes shown in figure 1. The
continuous curve is the distribution function following from the correspondingf (α) spectrum
via equation (4).

Usually, in critical phenomena one studies correlations for infinite system size (andLb

being microscopic) as a function ofr alone. This is justified if, for large enough system
sizesL, the correlation function is independent ofL (for simplicity we neglect any trivial
L-dependence due to prefactors in the definition of the observableP ). However, this is not
true in the multifractal case. Multifractality reflects broadness of the distribution function
π(P, Lb/L) on all length scales. This is due to the dependence of the box probability in
each box on a large number of conditions, simultaneously. More generally, the local box
observablePi(Lb) depends on a large number of conditions for the entire system of linear
sizeL, simultaneously. This behaviour was denoted as ‘many-parameter (MP) coherence’
[5]. In the context of the LD transition, coherence at zero temperatures is due to quantum
mechanical phase coherence of the electron’s wave function, and disorder introduces a huge
number of parameters, e.g. the position of point scatterers. In the case of MP coherence one
has to face the fact thatM [q] depends non-trivially onL, even forL → ∞. To distinguish
between the multifractal and the ‘ordinary’ situations one can implicitly define a length
scaleL̂ by the requirement thatM [q] will be independent ofL for L > L̂. We call L̂ the
MP coherence length. Still, two different cases have to be distinguished. It may happen
that L̂ introduces a cutoff for correlations. For example, the correlation lengthξ is an MP
coherence length of this kind. Alternatively,L̂ does not introduce a cutoff and correlations
still show a modified power law behaviour with respect tor for r � L̂. Such a kind of
MP coherence length occurs in ordinary critical behaviour whereL̂ is microscopic and no
multifractality occurs, i.e.τ(q) = d(q − 1).

After these general considerations we can formulate our expectations for the present case
of correlations of critical eigenstates at fixed energy. Because of the multifractal character
of the critical states whose range is only limited by the localization lengthξ � L we can
expect to be dealing with an MP coherent situation withL being the MP coherence lengthL̂,
setting the cutoff for correlations. Therefore, we consider the regimelB � Lb < r < L � ξ

and make theansatz

M [q](r, Lb, L) ∝ L
x2(q)

b L−y2(q)r−z(q). (10)

The task is now to find the scaling relations between the set of exponents
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x2(q), y2(q), z(q) and theτ(q) function of equation (3). These scaling relations can be
derived on the basis of heuristic arguments. Consider the limiting situations (i) wherer is of
the order ofLb and (ii) wherer is of the order ofL. In case (i) the functionM [q] will behave
like 〈[P(Lb)]2q〉L while in case (ii) a decoupled behaviour occurs,M [q] ∼ (〈[P(Lb)]q〉L)2.
The uniqueness of scaling exponents allows then to conclude the desired scaling relations

y2(q) = d + τ(2q) (11)

x2(q) = 2d + 2τ(q) (12)

z(q) = d + 2τ(q) − τ(2q) (13)

already proposed in [14, 5]. It is worth mentioning that the sumx2(q) − y2(q) − z(q)

vanishes due to the normalization of the wave function. To verify numerically the scaling
relations it is thus enough to verify two of the three equations given above. Therefore, we
concentrate on the exponentsz(q) and x2(q) for which we can set a fixed system size in
numerical calculations. This reduces the computational effort substantially.

Figure 3. The function of critical exponentsz(q) following from the scaling relation
equation (13).

Let us summarize the analytic behaviour ofx2(q) andz(q) according to equations (12)
and (13):x2(q) is a monotonic increasing function with negative curvature and asymptotic
slopes given by 2α(∓∞). It vanishes atq = 0. z(q) is non-negative with minimum at
(0, 0). For q > 0 (< 0) it is monotonically increasing (decreasing) and is asymptotically
bounded by the dimensiond (see figure 3). To check on the validity of equation (13) we
took 100 critical states of a system withL = 200lB and calculatedM [q](Lb, r, L) with
fixed valuesLb = lB, 4lB ; L = 200lB . The distancer was varied fromLb to 150lB .
The periodic boundary conditions in they-direction reduce the upper scale for a reliable
determination of exponents tor . 100lB . As can be seen from figure 4 the power law
behaviour holds up to≈ 60lB . The numerical data forz(q) were obtained by determining
the slope in the linear regime of the plots of lnM [q] against lnr. In figure 5 the average
of z(q) data over 100 states is shown in the regime|q| < 2. For comparison the function
d + 2τ(q) − τ(2q) is plotted, too. Within the errors the validity of the scaling relation
equation (13) can be confirmed. For later comparison we mention thatz(1) = 0.43± 0.05,
z(0.5) = 0.13 ± 0.03 and d2z/dq2(q = 0) = 1.1 ± 0.08 ≈ 4(α0 − d). To determine the
exponentsx2(q) numerically we fixedr = 100lB , L = 200lB and variedLb from 2lB to r.
As shown in figure 6 the scaling relation equation (12) is fulfilled, too.
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Figure 4. The correlatorM [q] (for q = 0.5) as a function of the spatial distancer in a log–log
plot.

Figure 5. The numerically obtained data forz(q) (*) in comparison with data following from
the scaling relation equation (13) (◦).

In summary, we have presented numerical evidence for the validity of the scaling
relations (12) and (13).

4. Correlations at two different energies

In this section we firstly discuss the scaling relations for correlations of critical eigenstates
at two different energies. We stress the role of a length scaleLω related to the energy
separationω. Secondly, we present numerical calculations which lead to the interpretation
of Lω being a cutoff scale for MP coherence. Thirdly, we verify the validity of scaling
relations based on this interpretation. Finally, we discuss the relevance of our results for the
interpretation of the local density of states as being an order parameter of the LD transition.
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Figure 6. The numerically obtained data forx2(q). The line shows the data following from the
scaling relation equation (12).

We define theq-dependent correlation of box probabilities corresponding to two different
eigenstates with energiesE andE + ω:

M [q]
ω (r, Lb, L) := 〈[Pi(E; Lb)]

q [Pi+s(E + ω; Lb)]
q〉L. (14)

To understand the correlation behaviour of non-localized states with respect to the energy
separation one has to compare the relevant energy scales of the problem. These are
the average level spacing1 and the energyEc(ω) corresponding to the time a wave
packet (formed from states within an energy window of widthω) needs to diffuse through
the system,L2 = (h̄/Ec(ω))D(ω). Here D(ω) is the corresponding diffusion constant.
According to Chalker [9], these scales give rise to the definition of two length scales
depending on the energy separationω:

L̃ω := (ω/Ec(ω))−1/2L (15)

Lω := (ω/1)−1/dL. (16)

The first length scale,̃Lω, is the typical distance a wave packet will travel diffusively in
a time h̄/ω. From this it is natural to assume that correlations betweenPi(E; Lb) and
Pi+s(E + ω; Lb) will be present at least for distancesr � L̃ω whereas for larger distances
the amplitudes are uncorrelated. Such uncorrelated behaviour is typical for random matrix
theory approaches to chaotic systems. The corresponding assumption is known as ‘isotropy’
or the ‘no-preferential-basis’ assumption and means that the unitary matrices that diagonalize
the Hamiltonian are distributed uniformly in the unitary group and no correlations (apart
from the unitarity property) between different matrix elements occur. Thus, the presence
of correlations means a breakdown of the ‘no-preferential-basis’ assumption. In electron
systems with spatial disorder, however, a preference to some basis is always given. This
preference is lost inM [q]

ω for distancesr � L̃ω.
The second length scale,Lω, is the linear size of a system with level spacingω. Taking

the existence of a preferential basis to be significant we will adopt the hypothesis that
two wave functions with energetic separation smaller than the level spacing show a spatial
correlation behaviour of their amplitudes similar to that corresponding to one of these wave
functions, i.e. they are statistically indistinguishable.

At the critical point of the LD transition the conductance becomes a size independent
quantity,G = g∗e2/h, and with the help of the Einstein relation between conductivity and
diffusion one findsL̃ω = (g∗)1/dLω [9]. Sinceg∗ is of O(1) the two length scales coincide
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at the LD transition. Therefore, we will focus our considerations on the role ofLω and start
with the following working hypothesis:

M
[q]
ω will show the same correlation exponentz(q) as M

[q]
ω=0 providedr � Lω. For

distancesr � Lω the amplitudesPi(E; Lb) andPi+s(E + ω; Lb) are uncorrelated.
This means thatLω is an MP phase coherence length setting a cutoff for correlations. Asking
for the scaling properties ofM [q]

ω in the regimeLb < r < Lω 6 L we make theansatz
(cf equation (10))

M [q]
ω ∝ L

X2(q)

b r−z(q)LZ(q)
ω L−Y2(q). (17)

Here we have already anticipated that the exponent with respect tor is z(q), as given
before, and will check whether this is consistent within the following procedure of deriving
the scaling relations betweenX2(q), z(q), Z(q), Y2(q) and τ(q). As in the case ofM [q]

for a fixed energy we consider limiting situations. In case (i) we keepr of the order ofLb

and Lω of the order ofL, whereas in case (ii) we keepr of the order ofLω. Following
our working hypothesis for case (i) we expect no difference from the case with zero energy
separation

M [q]
ω ∝ 〈[Pi(E; Lb)]

2q〉L (18)

resulting in

X2(q) − z(q) = d + τ(2q) = Y2(q) − Z(q). (19)

For case (ii), according to the hypothesis,M
[q]
ω depends neither onr nor on Lω and

approaches the uncorrelated value,

M [q]
ω ∝ (〈[Pi(E; Lb)]

q〉L)2. (20)

This leads to

z(q) = Z(q) X2(q) = 2d + 2τ(q) = Y2(q). (21)

Equations (19) and (21) yield the scaling relations

X2(q) = 2d + 2τ(q) = Y2(q) (22)

z(q) = Z(q) = d + 2τ(q) − τ(2q) (23)

which form a central result of this article. Now the following conclusions can be drawn.
(1) The result forz(q) is the same as in the case of zero energy separation. (2) The energy
separationω is not an independent scaling parameter but appears only in the combination
Lω/r. (3) The exponent corresponding to the box size,x2(q) = X2(q), is not affected by
a finite energy separation but the exponent corresponding to the system sizeL (which is
y2(q) for zero energy separation) splits up into the exponentsZ(q) (corresponding toLω)
andY2(q) (corresponding toL for finite energy separation).

In [5] it has been speculated that forr � Lω modified power law correlations may
still exist. Such behaviour would be in conflict with the interpretation ofL̃ω adopted here
and it would lead to different scaling relations in comparison to (22) and (23). Especially,
the equality betweenz(q) andZ(q) would be lost for arbitrary values ofq. However, the
possibility of such behaviour could not be ruled out on the basis of previously obtained
numerical data which correspond to the caseq = 1.

We will now demonstrate that the working hypothesis formulated above and the resulting
conclusions (1) and (2) are consistent with our data.

Firstly, we checked whetherLω serves as a cutoff for correlations. That this is indeed
the case can be seen from figure 7 showing the logarithm ofM

[q]
ω as a function of lnr (r

is measured in units oflB) for a fixed sizeLb = lB and q = 0.5. The energy separation
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Figure 7. The correlatorM [q]
ω (for q = 0.5) as a function of the spatial distancer in a log–log

plot for Lω = 30lB .

Figure 8. The correlatorM [q]
ω (for q = 0.5) as a function of the length scaleLω in a log–log

plot.

ω corresponds toLω = 30lB . A clear r-dependence up to approximately this scale can be
observed. In order to calculate a reliable scaling exponentz(q) one has to takeLω > 100lB .
Doing so, we found (within the errors) the samez(q) values as for correlations with no
energy separation, e.g.z(1) = 0.39± 0.04, z(q = 0.5) = 0.10± 0.03. Thus, the working
hypothesis turned out to be consistent with our data. The next step is to investigate the
scaling exponentZ(q) corresponding toLω which should, according to the scaling relation
equation (23), be equal toz(q), resulting in a combined scaling parameterr/Lω.

For the numerical determination ofZ(q) we used about 1302 combinations of pairings
between different eigenstates. For each pair the actual value of the cutoff scale for
correlations fluctuates around the calculated valueLω. This fact requires a large number of
data to extract reliable scaling exponents. From the plots of lnM

[q]
ω versus lnLω with fixed

values ofr ≈ Lb = lB we determined the approximate linear behaviour in a regime between
Lω ≈ 20lB and Lω ≈ 50lB . As can be seen in figure 8 (q = 0.5) there are fluctuations
due to rare pairings. In figure 9 we show the numerically obtainedZ(q) function together
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Figure 9. The numerically obtained data forZ(q) (◦) in comparison with the numerically
obtained data forz(q) (*).

with the errors of the linear fit in log–log plots. It is compared with the previously obtained
z(q) function for zero energy separation (cf section 3). The data show that the equality
Z(q) = z(q) is consistent with our data, e.g.Z(1) = 0.38± 0.04, Z(0.5) = 0.09± 0.03
and d2Z/dq2(q = 0) = 1.0 ± 0.1.

We have thus demonstrated that the working hypothesis as well as the scaling relations
are consistent with our numerical results.

Having established the role ofr/Lω as the relevant scaling parameter for correlations of
eigenstate amplitudes with universal exponentz(q) (related toτ(q) by a scaling relation) let
us now discuss the consequences of these findings for the interpretation of the local density
of states being an order parameter of the LD transition. The local density of states (LDOS)
is defined formally asρ(E, r) = ∑

n δ(E − En)|ψn(r)|2 whereψn(r) are wave functions
corresponding to eigenenergiesEn. In a finite system this function has isolated peaks atEn

and becomes a smooth function of energy only for an open system or in the thermodynamic
limit. This is also true for the global density of states (DOS)ρ(E) = L−d

∑
n δ(E − En).

Since the smallest relevant energy scale for the structure of the DOS as well as of the LDOS
is set by the average level spacing1 a smearing out of theδ-functions over this scale is
needed to talk about DOS and LDOS in finite systems. It is known that the average DOS
does not reflect the LD transition but is a smooth function of energy and independent of
system sizeL. With this smearing out of theδ-functions we define the LDOS as

ρ(E, r) = 1(E)−1|ψ(E, r)|2 (24)

where |ψ(E, r)|2 represents the microcanonical average of squared amplitudes at a given
energyE. Since1(E) is smooth in energy and behaves asL−d , the scaling behaviour of
the LDOS is determined by that of the wave function. Consequently, we have

〈[ρ(E, r)]q〉L ∝ L(q−1)d−τ(q) (25)

and for the typical value

ρtyp = exp[〈ln(ρ(r))〉L] ∝ Ld−α0 (26)

which doesreflect the LD transition. ScalingL with the localization lengthξ ∝ |E −E∗|−ν

whereE∗ andν are the critical energy and the critical exponent of the localization length,



7158 K Pracz et al

respectively, we arrive at the conclusion that the typical LDOS vanishes on approaching the
critical energy with exponentβtyp = ν(α0−d). This observation has led to the interpretation
of the LDOS being an order parameter field of the LD transition [5] (see also [3, 15]). The
unconventional feature as compared to ordinary critical phenomena lies in the facts (i) that
the order parameter field has a broad distribution resulting in a non-linear dependence of
exponents on the degree of moments considered (multifractality) and (ii) that the average
value has vanishing scaling exponent while the typical value gives rise to a positive scaling
exponentβtyp. The scaling relations that we derived for the wave function amplitudes
transform to scaling relations of the LDOS since each box amplitude has to be multiplied
by a constant factor ofLd ,

〈(ρ(E, r1))
q(ρ(E + ω, r2))

q〉L ∝ (Lω/r)z(q)L−A(q) r = |r1 − r2| (27)

z(q) = d + 2τ(q) − τ(2q) A(q) = 2(1 − q)d + 2τ(q). (28)

In this light our scaling relations turn out to be the appropriate scaling relations connecting
the spatial correlations of the local order parameter field to its scaling dimensions (cf
equations (25), (27) and (28)). However, due to the MP coherence these scaling relations
are different from those of ordinary critical exponents where only one correlation exponent
appears and no multifractality has to be taken into account. The most remarkable difference
lies here in the observation that power law scaling is also present in the MP coherence
length L̂. The latter is given by the system sizeL for energy separation smaller than the
level spacing or byLω for energy separation larger than the level spacing. Our findings
demonstrate that the interpretation of the LDOS being an order parameter field for the LD
transition is supported by the existence of universal scaling relations. We close this section
by pointing out thatz(1) = 2 − τ(2) ≈ 0.4 6= 0 (for the correlator of the density of states)
with Lω/r forming the scaling parameter is equivalent (cf [9, 16]) to the phenomenon
of ‘anomalous diffusion’ found by Chalker and Daniell [8]. As pointed out in [8], the
anomalous character of diffusion lies in the non-Gaussian dispersion of a wave packet in
time t despite the fact that the average diameter grows like

√
t . This non-Gaussian time

dispersion is caused by the multifractal character of eigenstates.

5. Conclusions

We have demonstrated explicitly that the distribution of amplitudes of critical eigenstates
in quantum Hall systems (QHSs) is contained in the multifractalf (α) spectrum, essentially
characterized by one critical exponent,α0 ≈ 2.28 (section 2). Following [5] we derived
scaling relations which relate the critical exponents of the spatial correlation of amplitudes
(for a fixed energy in the critical regime) to the multifractal spectrum (equations (11–
13)) and demonstrated that they are consistent with numerical data obtained for QHSs
(section 3). Most interesting is the (non-trivial) dependence of the correlator on the
system size. In section 4 we considered correlations of amplitudes corresponding to critical
eigenstates with energy separationω. Following Chalker [9] we identified a length scale
Lω (describing the system size with level spacingω) as the relevant cutoff for correlations.
Furthermore, we exploited the hypothesis that the amplitudes are correlated as for zero
energy separation provided their distance is much less thanLω. We found scaling relations
(equations (25), (27) and (28)) which relate all the correlation exponents to the universal
multifractal spectrum of critical eigenstates. Most important are (i) the confirmation of the
scaling parameterLω/r and (ii) the identification ofLω as the upper limit for multifractal
correlations. We discussed implications of our results for the statistical properties of the local
density of states in the critical regime. Our findings demonstrate that the interpretation of
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the LDOS being an order parameter field for the LD transition is supported by the existence
of universal scaling relations.
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