IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Correlation of eigenstates in the critical regime of quantum Hall systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 8 7147
(http://iopscience.iop.org/0953-8984/8/38/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.207
The article was downloaded on 14/05/2010 at 04:13

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/38
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt8r(1996) 7147-7159. Printed in the UK

Correlation of eigenstates in the critical regime of quantum
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Abstract. We extend the multifractal analysis of the statistics of critical wave functions

in quantum Hall systems by calculating numerically the correlations of local amplitudes
corresponding to eigenstates at two different energies. Our results confirm multifractal scaling
relations which are different from those occurring in conventional critical phenomena. The
critical exponent corresponding to the typical amplitude~ 2.28, gives an almost complete
characterization of the critical behaviour of eigenstates, including correlations. Our results
support the interpretation of the local density of states being an order parameter of the Anderson
transition.

1. Introduction

Two-dimensional independent electrons in the presence of static disorder and a strong
magnetic field undergo disorder induced localization—delocalization (LD) transitions when
the Fermi energy crosses critical energies—the Landau energies. These LD transitions are
believed to be responsible for the integer quantum Hall effect [1, 2]. In finite-size systems
the localization lengtl§ of the electronic states is larger than the system Eifer a certain
energy rangeAE, around the critical energies. These states are calligidal states In

the thermodynamic limitAE o L=Y" wherev is the critical exponent of. An obvious

task for a theory of the LD transition is to yield the statistics and scaling behaviour of
eigenstates in the critical regime. After pioneering works by Wegner [3] and Aoki [4] it
became clear that the critical wave functions have a multifractal structure (for a review
see [5] and references therein). The entire distribution of local amplitudes and its scaling
behaviour is encoded in the multifractile) spectrum. The distribution is broad on all
length scales and close to a log-normal distribution. The most important quantity is the
maximum positiongg, of f(«). It describes the scaling behaviour of the geometric mean
of what serves as typical amplitude of a critical wave function. Thg(«x) spectrum has

been interpreted as a spectrum of critical exponents related to the order parameter field
of the LD transition [5]. To be consistent with such an interpretatfgnr) has to share
several features with scaling exponents in conventional critical phenomena. Firstly, it has
to be universal, i.e. independent of the disorder configuration and the microscopic details
of the electron state. In previous studies this was confirmed [6]. Secondly, correlations of
the order parameter field have to be relatedfi@) by appropriate scaling relations. A
systematic investigation of this topic is presented here (related conformal scaling relations
were recently investigated by Dohmenal [7]). Our numerical data are consistent with
universal scaling relations betwegtia) and scaling exponents of the energetic and spatial
correlations of critical wave functions.
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The article is organized as follows. In section 2 we explicity demonstrate that the
multifractal spectrum describes the distribution function of local amplitudes. In section 3
the spatial correlations of local amplitudes (and powers thereof) of wave functions at a
fixed energy in the critical regime are investigated. We study the scaling with respect
to the size of boxes which the local amplitude is averaged over, and with respect to the
distance between correlated amplitudes. We find that scaling relations are fulfilled which
can also be obtained by heuristic arguments. In section 4 we study the correlator of two
local amplitudes corresponding to critical eigenstates at energies separatedVidy find
that a characteristic length scalg (introduced by Chalker [8, 9]) serves as a cutoff length
for multifractal correlations. Remarkably, two local amplitudes corresponding to eigenstates
separated in energy hy are correlated in the same way as two amplitudes corresponding
to one eigenstate, provided their spatial distance is lessiifaBy transforming from the
wave function amplitudes to the local density of states our results show that the local density
of states has several features in common with order parameter fields. The conclusions are
summarized in section 5.

2. Distribution of local amplitudes

In this section we first review the multifractal analysis of the distribution of local amplitudes
of critical eigenstates. Secondly, we confirm that the distribution is encoded in the
multifractal f (o) spectrum by a direct comparison of the numerically obtained histogram of
local amplitudes with the theoretical distribution function that follows from the numerically
obtainedf («) spectrum.

In 1983 Aoki [4] gave a nice argument for the multifractal behaviour of critical wave
functions (although at that time the phrase ‘multifractality’ was not yet common). His
argument goes as follows. Consider the inverse participation number defined by

P:A&mwm4 @

where Q denotes a-dimensional region with linear sizé. If the wave functiony(r)
is uniformly distributed—as in a metallic phase—th#h o« L~¢ and the participation
ratio p = (PL%)~! is constant. In the localized reginf@ ~ £~ and p vanishes in the
thermodynamic limit. At the transition point where the wave function is extended the
participation ratio still has to vanish in the thermodynamic limit if the LD phenomenon is
similar to a second-order phase transition. ConsequefRtlgcales with a powed* < d.
Wegner had already calculated the whole spectrum of exponents for generalized inverse
participation numbers within the non-linear sigma model [3]. This spectrum was interpreted
as a multifractal spectrum by Castellani and Peliti [10]. After extensive numerical work the
following description of the statistics of critical wave functiofér) is now established.
Consider the box probability

mmw=ﬁ|wmﬁ (2)

of some box with linear sizé,, normalized to the total volumé?¢, P(L) = 1. At the
LD transition the corresponding distribution functietiP; L, /L) gives rise to power law
scaling for the moments,

([PLp])L o (Lyp/ L)@ (3)

whered + 17(q) is a non-linear function of;. This non-linearity is a direct consequence
of Aoki's observation thatd + t(2) = d + d* # d + d. The brackets(...), in (3)
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denote the average over disorder configurations. In practice it turns out that, to a good
accuracy, this average can often be substituted by the spatial average over one wave
function for a given configuration. Within numerical accuracy the resulting spectra are
identical. This ‘universality’ is expected to be precise in the thermodynamic limit (see also
[11]).

The corresponding (universal) distribution function can be described in terms of
a single-humped, positive functioni(«) called the multifractal spectrum of the wave
function,

7(P; Ly/L)dP o (Ly/L)* /@ da 4)
where ¢« = InP/In(L,/L); f(a) is related tor(g) by a Legendre transforma-
tion

fla(g)) = alg)g — t(q) a(g) = dt(q)/dg. )

Thus, the statistics of critical eigenstates is encoded fif) or equivalently in
7(¢). Because of the horse-shoe shape pfx) it can be approximated by a
parabola,

fl@) ~d — (@ — ag)?/(dag — d)). (6)

This parabolic approximation (PA) containgy as the only parameter beside&

This is due to the assumed validity of the PA at least up |td < 1.
Equation (6) corresponds to a log-normal distribution centred around the typical
value Py, = exp{lnP) o (Lp/L)* with log variance proportional tocg —

d. A simple one-parameter approximation fgi(a), which takes into account that
the support &(c0), a(—00)] of f(a) is finite, is the semi-elliptic approximation

(SEA)
_ 2
f(a)~d‘/1—w- @)

To demonstrate that the distribution of local amplitudes of critical eigenstates
is encoded in f(¢) we present numerical results for a quantum Hall system
(QHS).

The wave functions are calculated for the model of independent (spinless) electrons
subject to strong magnetic field and disorder. The disorder was implemented by a set of
§-impurities with random positions and random strengths symmetric around zero. To avoid
some of the (degenerate) wave functions of the pure system having zeros precisely at the
position of the point scatterers (and thus not being affected by disorder) the number of point
scatterers was taken to be larger then the number of flux quanta penetrating the system’s area
L? [12]. The microscopic length scale of the problem is the magnetic leiagtiefined by
the size of a cell penetrated by a single flux quantumi22 We worked out the representing
Hamiltonian matrix in the Landau representation which is convenient for periodic boundary
conditions in one direction (say thgdirection). To account for a finite system size in
the x-direction we adopted the Landau counting procedure which results in a matrix of
dimensionN = L?/(2x13), after projecting to the lowest Landau band. The matrix has
band structure with a bandwidth of ordefN and allows for diagonalizing systems of
linear sizeL about 200z with the aid of usual workstations. The diagonalization yields the
eigenvalues and eigenstates for any desired energy window within the lowest Landau band.
The determination of the rang&E of critical states was based on a previous analysis of
Thouless numbers within the same model [13].
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Figure 1. Squared amplitudes of a critical wave function for a system of linear size 200 magnetic
lengths. The corresponding(«) spectrum @) together with the parabolic approximation
(GRS ) (PA, equation (6)) and the semi-elliptic approximation (——) (SEA, equation (7)) are
also shown.

In figure 1 the squared amplitudes of a wave function from the centre of the Landau
band are shown together with th&«) spectrum calculated from these amplitudes. The
corresponding histogram of the logarithm of amplitudes (measured on a box of/§jze 4
is displayed in figure 2 together with the distribution function calculated from ftte)
spectrum using (4). These figures demonstrate that the distribution of amplitudes (i) is
encoded in thef («) spectrum and (ii) is close to a log-normal distribution characterized
by one critical exponenty = 2.28 + 0.03 (the average over 130 critical states). Similar
findings have been presented already in section 12.2 of [2].

3. Correlations at fixed energy

In this section we first outline a theoretical description of scaling relations between the
critical exponents of the correlations at a fixed energy andftte® spectrum. We follow
mainly the presentation of [5]. Also, we present our numerical data which confirm the
scaling relations.

To study the spatial correlations of amplitudes for a fixed energy we considef- the
dependent correlations

MY, Ly, L) = ([P;(Lp)] [ Prss (Lp)]) 1 (8)

where the average is to be taken over all pairs of boxes with fixed distaacel,,.

For critical states where the microscopic scéjeiff our case) and the macroscopic scale
(the localization lengttg in our case) are separated, one can expect power law behaviour
of M4l in the regime

Ip L Lp, 1, L LE. 9)
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Figure 2. Histogram of the logarithm of squared amplitudes shown in figure 1. The
continuous curve is the distribution function following from the corresponditg) spectrum
via equation (4).

Usually, in critical phenomena one studies correlations for infinite system sizeI{and
being microscopic) as a function efalone. This is justified if, for large enough system
sizesL, the correlation function is independent bf(for simplicity we neglect any trivial
L-dependence due to prefactors in the definition of the obsenblélowever, this is not

true in the multifractal case. Multifractality reflects broadness of the distribution function
w(P, Ly,/L) on all length scales. This is due to the dependence of the box probability in
each box on a large number of conditions, simultaneously. More generally, the local box
observableP;(L,) depends on a large number of conditions for the entire system of linear
size L, simultaneously. This behaviour was denoted as ‘many-parameter (MP) coherence’
[5]. In the context of the LD transition, coherence at zero temperatures is due to quantum
mechanical phase coherence of the electron’s wave function, and disorder introduces a huge
number of parameters, e.g. the position of point scatterers. In the case of MP coherence one
has to face the fact that!?] depends non-trivially ori, even forL — oco. To distinguish
between the multifractal and the ‘ordinary’ situations one can implicitly define a length
scaleL by the requirement thaz[4! will be independent of. for L > L. We call L the

MP coherence length. Still, two different cases have to be distinguished. It may happen
that L introduces a cutoff for correlations. For example, the correlation lefdshan MP
coherence length of this kind. Alternativel&,does not introduce a cutoff and correlations
still show a modified power law behaviour with respect-téor » > L. Such a kind of

MP coherence length occurs in ordinary critical behaviour wheis microscopic and no
multifractality occurs, i.ez(q) = d(g — 1).

After these general considerations we can formulate our expectations for the present case
of correlations of critical eigenstates at fixed energy. Because of the multifractal character
of the critical states whose range is only limited by the localization legth L we can
expect to be dealing with an MP coherent situation witheing the MP coherence length
setting the cutoff for correlations. Therefore, we considerthere@me L, <r < L < &
and make thansatz

Ml (r, Ly, L) LZZWL—)’z(q)r—z(q)_ (10)

The task is now to find the scaling relations between the set of exponents
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x2(q), y2(q), z(g) and thet(g) function of equation (3). These scaling relations can be
derived on the basis of heuristic arguments. Consider the limiting situations (i) wieof

the order ofL, and (ii) wherer is of the order ofL. In case (i) the function/!4! will behave

like ([P(L;)]%),. while in case (ii) a decoupled behaviour occuv?l ~ (([P(L;)]9)1)%.

The uniqueness of scaling exponents allows then to conclude the desired scaling relations

yo(q) = d + 1(2q) (11)
x2(q) = 2d + 2t (q) (12)
2(q) =d + 2t(q) — 1(2q) (13)

already proposed in [14,5]. It is worth mentioning that the swt(y) — y2(¢) — z(g)
vanishes due to the normalization of the wave function. To verify numerically the scaling
relations it is thus enough to verify two of the three equations given above. Therefore, we
concentrate on the exponent§) and x,(g) for which we can set a fixed system size in
numerical calculations. This reduces the computational effort substantially.

1.6 "
1.2 .
#(q)

08 F J

04 -

-20 -15 -10 -5 0 5 10 15 20

Figure 3. The function of critical exponentg(q) following from the scaling relation
equation (13).

Let us summarize the analytic behaviourxgfq) andz(g) according to equations (12)
and (13):x2(g) is a monotonic increasing function with negative curvature and asymptotic
slopes given by @(oc0). It vanishes ay = 0. z(g) is non-negative with minimum at
(0,0). Forg > 0 (< 0) it is monotonically increasing (decreasing) and is asymptotically
bounded by the dimensiat (see figure 3). To check on the validity of equation (13) we
took 100 critical states of a system with = 200 and calculated[9!(L,, r, L) with
fixed valuesL, = Ip,4lp; L = 200. The distancer was varied fromL, to 150Q3.
The periodic boundary conditions in thedirection reduce the upper scale for a reliable
determination of exponents to < 100z. As can be seen from figure 4 the power law
behaviour holds up tez 60/3. The numerical data for(¢) were obtained by determining
the slope in the linear regime of the plots ofMA?] against Inr. In figure 5 the average
of z(¢) data over 100 states is shown in the regipe< 2. For comparison the function
d + 2t(qg) — ©(2q) is plotted, too. Within the errors the validity of the scaling relation
equation (13) can be confirmed. For later comparison we mentior ¢(hat= 0.43 £ 0.05,
2(0.5) = 0.134 0.03 and dz/dg%(g = 0) = 1.1+ 0.08 ~ 4(ag — d). To determine the
exponentsca(g) numerically we fixed- = 100, L = 2003 and variedL, from 23 to r.

As shown in figure 6 the scaling relation equation (12) is fulfilled, too.
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Figure 5. The numerically obtained data faKg) (*) in comparison with data following from
the scaling relation equation (13pj§.

In summary, we have presented numerical evidence for the validity of the scaling
relations (12) and (13).

4. Correlations at two different energies

In this section we firstly discuss the scaling relations for correlations of critical eigenstates
at two different energies. We stress the role of a length staleelated to the energy
separatiornw. Secondly, we present numerical calculations which lead to the interpretation
of L, being a cutoff scale for MP coherence. Thirdly, we verify the validity of scaling
relations based on this interpretation. Finally, we discuss the relevance of our results for the
interpretation of the local density of states as being an order parameter of the LD transition.
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Figure 6. The numerically obtained data fep(g). The line shows the data following from the
scaling relation equation (12).

We define they-dependent correlation of box probabilities corresponding to two different
eigenstates with energigs and E + w:

MUN(r, Ly, L) == ([P:(E; Lp))?[ P15 (E + w; Lp)]?) 1. (14)

To understand the correlation behaviour of non-localized states with respect to the energy
separation one has to compare the relevant energy scales of the problem. These are
the average level spacing and the energyE.(w) corresponding to the time a wave
packet (formed from states within an energy window of widbhneeds to diffuse through

the system,L? = (h/E.(w))D(w). Here D(w) is the corresponding diffusion constant.
According to Chalker [9], these scales give rise to the definition of two length scales
depending on the energy separation

L, = (0/E(w)) 2L (15)
Lo = (w/A)YIL. (16)

The first length scalel,,, is the typical distance a wave packet will travel diffusively in
a time i/w. From this it is natural to assume that correlations betwBgik; L,) and
P, (E 4+ w; L) will be present at least for distancesk L., whereas for larger distances
the amplitudes are uncorrelated. Such uncorrelated behaviour is typical for random matrix
theory approaches to chaotic systems. The corresponding assumption is known as ‘isotropy’
or the ‘no-preferential-basis’ assumption and means that the unitary matrices that diagonalize
the Hamiltonian are distributed uniformly in the unitary group and no correlations (apart
from the unitarity property) between different matrix elements occur. Thus, the presence
of correlations means a breakdown of the ‘no-preferential-basis’ assumption. In electron
systems with spatial disorder, however, a preference to some basis is always given. This
preference is lost inM,Ej’] for distances > L,,.

The second length scalg,,, is the linear size of a system with level spacingTaking
the existence of a preferential basis to be significant we will adopt the hypothesis that
two wave functions with energetic separation smaller than the level spacing show a spatial
correlation behaviour of their amplitudes similar to that corresponding to one of these wave
functions, i.e. they are statistically indistinguishable.

At the critical point of the LD transition the conductance becomes a size independent
quantity, G = g*e?/h, and with the help of the Einstein relation between conductivity and
diffusion one findsL,, = (g*)¥?L,, [9]. Sinceg* is of O(1) the two length scales coincide
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at the LD transition. Therefore, we will focus our considerations on the role,aind start
with the following working hypothesis:

MY will show the same correlation exponetty) as M(Ef’io providedr <« L,. For
distances > L, the amplitudesP;(E; L;) and P;,,(E + w; L) are uncorrelated.
This means thak,, is an MP phase coherence length setting a cutoff for correlations. Asking
for the scaling properties at7?! in the regimelL, < r < L, < L we make theansatz
(cf equation (10))

M(E)q] x szz(q)rfz(q)Lg(q)Lsz(q). (17)

Here we have already anticipated that the exponent with respecista(g), as given
before, and will check whether this is consistent within the following procedure of deriving
the scaling relations betweeXi(¢), z(¢), Z(q), Y2(¢) andz(g). As in the case ofil4!
for a fixed energy we consider limiting situations. In case (i) we keepthe order ofL,
and L,, of the order ofL, whereas in case (ii) we keepof the order ofL,. Following
our working hypothesis for case (i) we expect no difference from the case with zero energy
separation

MY oc ([Pi(E; Lp)]™) L (18)
resulting in
X2(q) —2(q) =d + 1(2q) = Ya(q) — Z(q). (19)

For case (ii), according to the hypothesM,c[f] depends neither om nor on L, and
approaches the uncorrelated value,

MY o ([P, (E; Lp)]") 1) (20)
This leads to

2(q) = Z(q) X2(q) = 2d + 2t(q) = Ya(q). (21)
Equations (19) and (21) yield the scaling relations

Xa(q) = 2d + 2t(q) = Y2(q) (22)

z2(q) = Z(q) =d + 2t(q) — ©(2q) (23)

which form a central result of this article. Now the following conclusions can be drawn.
(1) The result forz(¢) is the same as in the case of zero energy separation. (2) The energy
separationw is not an independent scaling parameter but appears only in the combination
L,/r. (3) The exponent corresponding to the box sizfg) = X,(q), is not affected by
a finite energy separation but the exponent corresponding to the systerh §ideich is
v2(g) for zero energy separation) splits up into the exponéfitp) (corresponding td.,,)
andY(q) (corresponding td. for finite energy separation).

In [5] it has been speculated that fer> L, modified power law correlations may
still exist. Such behaviour would be in conflict with the interpretation_gfadopted here
and it would lead to different scaling relations in comparison to (22) and (23). Especially,
the equality between(g) and Z(g) would be lost for arbitrary values @f. However, the
possibility of such behaviour could not be ruled out on the basis of previously obtained
numerical data which correspond to the case 1.

We will now demonstrate that the working hypothesis formulated above and the resulting
conclusions (1) and (2) are consistent with our data.

Firstly, we checked whethek,, serves as a cutoff for correlations. That this is indeed
the case can be seen from figure 7 showing the Iogarithmk’)]f as a function of In (r
is measured in units df;) for a fixed sizeL, = Iy andg = 0.5. The energy separation
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Figure 7. The correlator]VI,Ef’] (for ¢ = 0.5) as a function of the spatial distancen a log—log
plot for L, = 303.
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Figure 8. The correlatorML“] (for ¢ = 0.5) as a function of the length scalg, in a log—log
plot.

w corresponds td., = 30/3. A clearr-dependence up to approximately this scale can be
observed. In order to calculate a reliable scaling exponentone has to také.,, > 1005.

Doing so, we found (within the errors) the samgy) values as for correlations with no
energy separation, e.g(1) = 0.39+ 0.04, z(¢ = 0.5) = 0.10+ 0.03. Thus, the working
hypothesis turned out to be consistent with our data. The next step is to investigate the
scaling exponenk (¢) corresponding td.,, which should, according to the scaling relation
equation (23), be equal tag), resulting in a combined scaling parametgL.,,.

For the numerical determination &(g) we used about 130combinations of pairings
between different eigenstates. For each pair the actual value of the cutoff scale for
correlations fluctuates around the calculated vdlye This fact requires a large number of
data to extract reliable scaling exponents. From the plots Ml% versus InL,, with fixed
values ofr ~ L, = Iz we determined the approximate linear behaviour in a regime between
L, ~ 203 and L, ~ 505. As can be seen in figure & (= 0.5) there are fluctuations
due to rare pairings. In figure 9 we show the numerically obtaiigg) function together
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Figure 9. The numerically obtained data f&(¢) (O) in comparison with the numerically
obtained data for(g) (*).

with the errors of the linear fit in log—log plots. It is compared with the previously obtained
z(q) function for zero energy separation (cf section 3). The data show that the equality
Z(q) = z(q) is consistent with our data, e.g.(1) = 0.38+ 0.04, Z(0.5) = 0.09+ 0.03
and ¢Z/dg%(qg =0) = 1.0+ 0.1.

We have thus demonstrated that the working hypothesis as well as the scaling relations
are consistent with our numerical results.

Having established the role of L,, as the relevant scaling parameter for correlations of
eigenstate amplitudes with universal expongigt) (related tor (¢) by a scaling relation) let
us now discuss the consequences of these findings for the interpretation of the local density
of states being an order parameter of the LD transition. The local density of states (LDOS)
is defined formally ap (E,r) = Y, 8(E — E,) |y, (r)|?> wherey, (r) are wave functions
corresponding to eigenenergifs. In a finite system this function has isolated peak& at
and becomes a smooth function of energy only for an open system or in the thermodynamic
limit. This is also true for the global density of states (DQ8E) = LY, §(E — E,).
Since the smallest relevant energy scale for the structure of the DOS as well as of the LDOS
is set by the average level spacinga smearing out of thé-functions over this scale is
needed to talk about DOS and LDOS in finite systems. It is known that the average DOS
does not reflect the LD transition but is a smooth function of energy and independent of
system sizel.. With this smearing out of thé-functions we define the LDOS as

p(E, ) = AE) HW(E, 7)[? (24)

where |{)(E, )| represents the microcanonical average of squared amplitudes at a given
energyE. SinceA(E) is smooth in energy and behaveslas’, the scaling behaviour of
the LDOS is determined by that of the wave function. Consequently, we have

(lo(E, ™)y oc LU DIT@ (25)
and for the typical value
pryp = eXplIN(p(r))),] o L= (26)

which doesreflect the LD transition. Scaling with the localization lengtl§ o |E — E*|™”
where E* andv are the critical energy and the critical exponent of the localization length,
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respectively, we arrive at the conclusion that the typical LDOS vanishes on approaching the
critical energy with exponery, = v(ag—d). This observation has led to the interpretation

of the LDOS being an order parameter field of the LD transition [5] (see also [3, 15]). The
unconventional feature as compared to ordinary critical phenomena lies in the facts (i) that
the order parameter field has a broad distribution resulting in a non-linear dependence of
exponents on the degree of moments considered (multifractality) and (ii) that the average
value has vanishing scaling exponent while the typical value gives rise to a positive scaling
exponentBy,. The scaling relations that we derived for the wave function amplitudes
transform to scaling relations of the LDOS since each box amplitude has to be multiplied
by a constant factor of.?,

((P(E, r))(p(E + w,72))4)1 o (L,/r)* DL~ 4@ r=|rL—ry (27)
2(q) =d+2t(q) — 1(2q) A(g) =21 — q)d + 2t(q). (28)

In this light our scaling relations turn out to be the appropriate scaling relations connecting
the spatial correlations of the local order parameter field to its scaling dimensions (cf
equations (25), (27) and (28)). However, due to the MP coherence these scaling relations
are different from those of ordinary critical exponents where only one correlation exponent
appears and no multifractality has to be taken into account. The most remarkable difference
lies here in the observation that power law scaling is also present in the MP coherence
length L. The latter is given by the system sizefor energy separation smaller than the
level spacing or byL, for energy separation larger than the level spacing. Our findings
demonstrate that the interpretation of the LDOS being an order parameter field for the LD
transition is supported by the existence of universal scaling relations. We close this section
by pointing out that: (1) = 2 — 7(2) =~ 0.4 # 0 (for the correlator of the density of states)
with L,/r forming the scaling parameter is equivalent (cf [9,16]) to the phenomenon
of ‘anomalous diffusion’ found by Chalker and Daniell [8]. As pointed out in [8], the
anomalous character of diffusion lies in the non-Gaussian dispersion of a wave packet in
time ¢+ despite the fact that the average diameter grows Jite This non-Gaussian time
dispersion is caused by the multifractal character of eigenstates.

5. Conclusions

We have demonstrated explicitly that the distribution of amplitudes of critical eigenstates
in quantum Hall systems (QHSSs) is contained in the multifragi@l) spectrum, essentially
characterized by one critical exponent, ~ 2.28 (section 2). Following [5] we derived
scaling relations which relate the critical exponents of the spatial correlation of amplitudes
(for a fixed energy in the critical regime) to the multifractal spectrum (equations (11—
13)) and demonstrated that they are consistent with numerical data obtained for QHSs
(section 3). Most interesting is the (non-trivial) dependence of the correlator on the
system size. In section 4 we considered correlations of amplitudes corresponding to critical
eigenstates with energy separation Following Chalker [9] we identified a length scale

L., (describing the system size with level spacivgas the relevant cutoff for correlations.
Furthermore, we exploited the hypothesis that the amplitudes are correlated as for zero
energy separation provided their distance is much less thanVe found scaling relations
(equations (25), (27) and (28)) which relate all the correlation exponents to the universal
multifractal spectrum of critical eigenstates. Most important are (i) the confirmation of the
scaling parametet.,,/r and (ii) the identification of_,, as the upper limit for multifractal
correlations. We discussed implications of our results for the statistical properties of the local
density of states in the critical regime. Our findings demonstrate that the interpretation of
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the LDOS being an order parameter field for the LD transition is supported by the existence
of universal scaling relations.
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